Phonons in graphene with point defects.

نویسندگان

  • Vadym Adamyan
  • Vladimir Zavalniuk
چکیده

The phonon density of states (DOS) of graphene with different types of point defects (carbon isotopes, substitution atoms, vacancies) is considered. Using a solvable model which is based on the harmonic approximation and the assumption that the elastic forces act only between nearest neighboring ions we calculate corrections to the graphene DOS dependent on the type and concentration of defects. In particular the correction due to isotopic dimers is determined. It is shown that a relatively small concentration of defects may lead to significant and specific changes in the DOS, especially at low frequencies, near the Van Hove points and in the vicinity of the K points of the Brillouin zone. In some cases defects generate one or several narrow gaps near the critical points of the phonon DOS as well as resonance states in the Brillouin zone regular points. All types of defects are characterized by the appearance of one or more additional Van Hove peaks near the (Dirac) K points and their singular contribution may be comparable with the effect of electron-phonon interaction. Besides, for low frequencies and near the critical points the relative change in density of states may be many times higher than the concentration of defects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of structural defects on the thermal conductivity of graphene: From point to line defects to haeckelites

We use nonequilibrium molecular-dynamics simulations to study the effect of structural defects on the thermal conductivity λ of graphene. Focusing on 5-7 and 5-8 defects in the graphene honeycomb lattice, we find that λ depends sensitively on whether the defects are isolated, form lines, or form extended arrangements in haeckelites. Our results indicate that the presence of defects makes λ anis...

متن کامل

Two-dimensional phonon transport in graphene.

Properties of phonons-quanta of the crystal lattice vibrations-in graphene have recently attracted significant attention from the physics and engineering communities. Acoustic phonons are the main heat carriers in graphene near room temperature, while optical phonons are used for counting the number of atomic planes in Raman experiments with few-layer graphene. It was shown both theoretically a...

متن کامل

Phonon Transport in Graphene

Properties of phonons – quanta of the crystal lattice vibrations – in graphene have attracted strong attention of the physics and engineering communities. Acoustic phonons are the main heat carriers in graphene near room temperature while optical phonons are used for counting the number of atomic planes in Raman experiments with few-layer graphene. It was shown both theoretically and experiment...

متن کامل

Thermal conductivity of graphene with defects induced by electron beam irradiation.

We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ∼7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electro...

متن کامل

Variability of bandgap and carrier mobility caused by edge defects in ultra-narrow graphene nanoribbons

We report the results of multi-scale modeling of ultra-narrow graphene nanoribbons (GNRs) that combines atomistic non-equilibrium Green’s function (NEGF) approach with semiclassical mobility modeling. The variability of the transport gap and carrier mobility caused by random edge defects is analyzed. We find that the variability increases as the GNR width is downscaled and that even the minimum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of physics. Condensed matter : an Institute of Physics journal

دوره 23 1  شماره 

صفحات  -

تاریخ انتشار 2011